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In the field of fire dynamics, although a modest number of studies on wildfire analysis exist, there is a lack of implemented computational 
methods that can accurately detect the presence of wildfire conditions. The need for these condition detection models is burgeoning as 
the substantial emissions of greenhouse gasses accelerate the rate of climate change. As a result of this, the severity and frequency of 
wildfires is drastically exacerbated year over year. In regard to this growing threat, this study aims to utilize artificial neural networks 
(ANNs) integrated into an application interface to make wildfire environmental conditions detection fast and accurate for firefighters in 
the field. In order to achieve this, we constructed a dataset containing a list of widely accepted environmental conditions that contribute 
to wildfire spread and ignition and utilized a K-means clustering algorithm on NDVI imagery to analyze fuel moisture. Finally, this was 
all integrated into an easy-to-use desktop application (further work can be done to create a mobile version). This approach successfully 
determined the presence of dangerous wildfire environments in input data at an accuracy rate of over 98%. By giving firefighters the abil-
ity to use accurate and intelligent solutions, we aim to make the process of firefighting much safer, easier, and drastically more efficient.

INTRODUCTION
Over 67,000 wildfires and more than 7.0 million acres burned an-
nually on average over the last 10 years in just the United States 
alone (K. Hoover & L. Hanson, 2019). In order to assess the risk 
of wildfires based on qualitative and environmental observations, 
many methods currently exist. Common examples of these include 
the Canadian Forest Fire Weather Index System, the National Fire 
Data System, and the National Fire Danger Rating System. How-
ever, the biggest struggle faced by these indices is analyzing and 
utilizing data in a practical and effective way (M. Hinds-Aldrich 
et al., 2017). Although some efforts have been made to modern-
ize firefighting by organizations such as the US Geographical Ser-
vice(USGS) when they developed the GeoMAC (USGS, 2005) 
system to digitally map and present current wildfire situations, the 
need for modern computational methods that can rapidly and ac-
curately detect wildfires based on the conditions data still stands.

In current methods, input from the various fire danger rating 
systems mentioned above is evaluated by human firefighters who 
rely on past experiences and exposure to determine whether or not 
a region is at a higher risk of fire (United States Forestry Service, 
1996). Although firefighter experience is an important aspect to 
firefighting, it is subject to common problems such as human error, 
lack of experience, and the fact that humans simply cannot process 
as much information as any other computerized system could. This 
study aims to solve that by using a binary classifier neural network 
trained on the current wildfire environmental conditions data and
having it detect whether or not wildfires could be present in a cer-
tain area, as opposed to firefighters making subjective decisions.

Binary classification neural networks have been proven to learn 
and extract unique new interpretations from large amounts of data, 
and this makes them a suitable approach. The neural network de-
veloped in this study takes in 6 environmental conditions as inputs 
and outputs a value between 0 and 1, with 0 being wildfire condi-
tions are not present and 1 being wildfire conditions are present.

METHODS
The procedure of this project was split into four main steps:
1. Determining which environmental conditions play a decisive role 
in wildfire environments so that they can be used as inputs for the 
neural network.
2. Obtaining data and constructing a dataset using the chosen inputs
3. Training a classification neural network on the gathered dataset 
for accurate detection of wildfire conditions
4. Integrating this trained machine learning model into an easy-to-
use, prototype desktop interface with the possibility of completing a 
mobile-version which firefighters could use out on the field.

Environmental Conditions
There are a variety of qualitative wildfire condition ranking sys-
tems and indicies widely used by firefighting departments. Each 
of these includes information about what environmental condi-
tions are considered as factors when it comes to judging whether 
or not a certain area is at a higher risk of fire. Through careful 
analysis of the indicies and systems listed in 1. Introduction, the 
following environmental conditions were chosen as inputs for the 
neural network: temperature, humidity, wind speed, soil tempera-
ture, soil moisture, and vegetation health.
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To effectively collect data about vegetation health in a certain re-
gion, Normalized Difference Vegetation Index (NDVI) imagery 
was used (Figure 1). NDVI imagery provides a graphical rep-
resentation of vegetation health by measuring the difference be-
tween near-infrared light (which vegetation reflects) and red light 
(which vegetation absorbs). Healthy vegetation that contains larg-
er amounts of chlorophyll, water, and moisture has higher NDVI 
values. Those values are then colour-coded onto an image where 
the healthier vegetation (less prone to burning) shows up as green, 
while drier vegetation (more prone to burning) shows up as red. 
The following equation is used to calculate NDVI where NIR is 
near-infrared light and RED is red light: 

In order for the dataset to be able to train the neural network, a 
K-means clustering algorithm was used to quantify color-cod-
ed information in an image so that it could be added to a dataset. 
K-means clustering is a technique that groups different observa-
tions into distinct clusters. The RGB (red, green, blue) values of 
pixels in the image are taken and assigned to a nearest cluster 
(Figure 2). Each of those clusters represents a different colour and 
the largest cluster represents the most dominant colour. The center 
of each cluster (also known as the centroid) is located by averag-
ing the distances of all the associated points. This is carried out by 
using the following distance equation where the x and y values are 
the coordinates of the points:

The centroid of each cluster gives us the RGB values of the most 
dominant color in the NDVI image. Due to the fact that fuel mois-
ture and health levels are visually represented in NDVI imagery, 
knowing the dominant color allows us to determine whether or not 
the vegetation (fuel) in that image is dominantly dry if the colour 
has a higher R (red) value, or moist if the value is a lower R-value 
with more emphasis on the G (green) and B (blue) values. This 
approach allowed us to extract and quantify numerical insights into 
fuel moisture which were then included in the dataset.

. 

Dataset Construction
The following 6 environmental conditions were decided to be 
used as inputs for the neural network: temperature, humidity, 
wind speed, soil temperature, soil moisture, and K-means RGB 
values of the most dominant color from the NDVI imagery for 
vegetation health. The next step was to compile that information 
into a binary classification dataset that could be used to train the 
ANN.

To construct a dataset, the NASA FIRMS Active Wildfire 
Database was first used to locate a list of actively burning wild-
fires. Using this database, the geographical coordinates of those 
active fires were acquired, and environmental conditions data 
about their temperature, humidity, wind speed, soil moisture and 
soil temperature, was downloaded through the AgroDashboard 
API. This API was also used to acquire remote sensing high-res-
olution NDVI imagery taken by the Landsat-8 and Sentinel satel-
lites that corresponded to each of those locations. Those images 
were then processed by the K-means algorithm to get the RGB 
values of their respective dominant colors. Numerous cases of 
fires and non-fires were collected and through several steps of 
data augmentation, the final dataset used for training contained 
around 2000 unique cases.

During dataset construction, this project also accounted for 
regional data bias by including balanced wildfire data from a mul-
titude of different regions, terrains, and topographies from across 
North America. This is a distinct and crucial advantage over other 
wildfire prediction models as it exhibits the ability to dynamically 
generate accurate predictions even in foreign regions or condi-
tions.

(1)

(2)

Figure 1. A sample NDVI image used for testing.

Figure 2. A graphical representation of the K-means clus-
tering method used. The coordinates of the centroid of the 
largest cluster will be the RGB values of the most dominant 
colour.
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Artificial Neural Network
In order to begin generating wildfire detections, an Artificial 
Neural Network (ANN) was created. This network is a classifier, 
meaning it outputs a value between 1 and 0, with 1 being fire 
conditions are present, and 0 being fire conditions are not present. 
An example output would be 0.985. This would mean that the 
algorithm thinks there is a 98.5% chance of fire conditions being 
present. Conversely, a value of 0.23 would mean that there is only 
a 23% chance of fire conditions being present. In order to achieve 
high accuracy, if the output is at or above 0.95, then it is classified 
as fire conditions present.

The network architecture used in this study contains 1 in-
put layer, 1 output layer, 2 hidden layers with 8 neurons each, 
23 nodes, and 120 connections (Figure 3). The Relu activation 
function was used due to its accelerated convergence of stochas-
tic gradient descent, and its subsequently faster learning rate (A. 
Krizhevsky, I. Sutskever, & G.E. Hinton, 2017) as opposed to 
other activation functions such as sigmoid or tanh. For optimi-
zation, the Adam (Adaptive Moment Estimation) optimizer was 
used in order to update attributes of the network, such as weights, 
during training. The following is the function used by the Adam 
optimizer to calculate the weights in the neural network, where w 
t −1 are the model weights, eta (η) is the step size, the Epsilon (ε) 
is to avoid a divide by zero error, and m t , v t are the estimators:

For a loss function, binary cross-entropy was used due to the 
classification nature of this problem. Loss functions are used to 
optimize the parameter values in the model and measure the error 
between the network’s output and the desired correct output. The 
following is the function used by the binary cross-entropy func-
tion where y  is the binary indicator (0 or 1) for the test
case, and p is the predicted probability (between 0 and 1) gener-
ated by the network:

Notice how this function uses a logarithm. As the predicted prob-
ability of the network reaches the correct value while training, 
log loss gradually decreases. However, as the predicted probabil-
ity decreases, the log loss increases rapidly so that both types of 
errors are penalized, but especially ones where the prediction is 
wrong, and the confidence is high. This is a marked advantage as 
this loss function leads to a better trained and robust model.

To split the dataset for training, it underwent a 70:20:10 split 
where 70% of the dataset was used for training, 20% was used for 
validation, and the last 10% was used for testing purposes. This 

ratio is slightly different from the commonly used Pareto princi-
ple which calls for a 80:20 split, but provides major benefits when 
training on relatively smaller sized datasets like the one used in this 
study because of the fact that it allows model validation to happen 
with greater accuracy on its different hyperparameters.
We deployed a dropout function with rate 0.20 after the first hidden 
layer to prevent neurons from excessively co-adapting. This meth-
od significantly reduces overfitting and is a major improvement 
over other regularization methods (N. Srivastava, G.E. Hinton, A. 
Krizhevsky, I. Sutskever, & R. Salakhutdinov, 2014).

The next hyperparameter which played a critical role was 
batch size. The batch size regulates the accuracy of the estimat-
ed error gradient which assigns the weights to connections while 
training, and this in turn influences the speed and stability of the 
learning process. We chose a batch size of 9 for training this model. 

Application Interface
In order for firefighters to start making predictions, a desktop app 
(with potential to be mobile) was built on the Tkinter framework 
to allow them to utilize the algorithm to generate their own predic-
tions with unique field-centric data (Figure 4, Figure 5, Figure 6). 

The app works by first prompting operators to upload their 
coordinate locations. Those coordinates are then used to collect re-
al-time, accurate weather data on humidity, wind speed, and tem-
perature using the OpenWeatherMap API. The second thing those 
coordinates are used for, are to get data on soil moisture and soil 
temperature. The app uses a geometric-coordinate algorithm to find 
the coordinates of a virtual one-hectare square using those original 
coordinates. The coordinates of that one-hectare square are then 
fed into the OpenWeatherMap agriculture API. This API allows us 
to call accurate, real-time soil moisture and soil temperature data 
acquired by remote sensing sensors on the Landsat-8 and Senti-

(3)

(4)

Figure 3. A diagram of the neural network architecture 
where each circle is a neuron, and the coloured lines in be-
tween are connections with their weights.
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nel satellites. This method is identical to how data was collected 
for the original training dataset, except instead of collecting data for 
multiple cases, it now collects real-time data from the firefighter’s 
coordinates.

The second thing that firefighters have to upload is an NDVI 
image that corresponds to their input coordinates. After uploading 
that image, the K-means clustering algorithm is run on  it. This gives 
us the RGB (Red, Green, Blue) values of the most dominant color in 
the image, which in turn, can give us insights into the fuel’s moisture 
content. After uploading the coordinate and image, the firefighter 
clicks the “Generate Prediction” button. This causes all the data that 
the app has collected to be fed into the neural network which then 
generates a prediction on whether or not fire conditions are present.

After the network generates a prediction, a detailed analytics 
page is shown. This page tells the user what the neural network’s 
prediction is, along with the K-means fuel moisture and envi-
ronmental data that was fed into it. Not only does this page give 
firefighters the prediction, but it also tells them what data was fed 
into the algorithm so that they themselves have a greater under-
standing of what is going on in their surroundings.
RESULTS
Neural Network Training
To ensure the accuracy and robustness of the neural network, a 
number of different metrics such as training accuracy, validation 
accuracy, training loss, and validation loss were used. The train-
ing accuracy shows how the model is progressing as it is learn-
ing, while the validation accuracy gives a measure of the quality 
of the model based on the validation set every epoch. Loss func-
tions on the other hand are used to optimize the parameter values 
in the model and measure the error between the network’s output 
and the desired correct output. The training loss is the error the 
network makes while training, and the validation loss is the error 
the network makes while validating.

The first original, unoptimized model (Figure 7) followed 
the conventional Pareto training validation split of 80:20, did not 
have a dropout layer, and had a batch size of 100. If you look at 
the Loss graph produced by the network after training (Figure 
7), you can see that this model shows large signs of overfitting. 
Overfitting is when the model has memorized the training exam-
ples and has not learned to generalize to new situations yet. This 
model also had a validation accuracy of 98.33%, which can be 
slightly improved upon further.

The next model uses the fine-tuned hyperparameters as dis-
cussed in “2.3 Artificial Neural Network” and leverages all the 
advantages mentioned in that section. It contains  a dropout layer 
with rate 0.20 after the first hidden layer to account for the over-
fitting, a training:validation:test split of 70:20:10, and a batch 

Figure 4. Screenshots of the application in use. The first win-
dow is the data entry pane in which the firefighter uploads his 
coordinates and a corresponding NDVI image. The second 
window is produced after clicking the “Generate Prediction” 
button and displays the environmental conditions, fuel mois-
ture data in the form of K-means dominant colour RGB values, 
and the neural networks prediction.

Figure 5. An example of when the app does not detect fire 
conditions.

Figure 6. An example of when the app does detect fire con-
ditions.
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Figure 7. These are the Accuracy and Loss graphs produced by the original network. As you can see, this model displays large 
signs of overfitting when the Validation loss is greater than the Training loss in the Model Loss graph. This model also trained 
in a less consistent manner, and achieved an accuracy rate of 98.33% which can be improved upon further.

Figure 8: Accuracy and Loss graphs produced by the final fine-tuned network. As you can see, this model achieved a higher 
accuracy rate of 98.61%, contains virtually no overfitting, and was trained in a more stable and less volatile manner.
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size of 9. If you look at the Accuracy and Loss graphs produced by 
this model after training (Figure 8), you’ll see that the Accuracy 
loss and Validation loss plots both converge, which shows us that 
there are virtually no signs of overfit. We also achieved a Valida-
tion accuracy of 98.61% as opposed to 98.33%, and we can see by 
looking at the Accuracy graph (Figure 8), that this model trained in 
a much more stable and less volatile manner.
Completed Model Testing
After training was completed and a final model was produced, an 
automated test (Figure 7) was run on the saved model in order to 
determine the final experimental accuracy. We used  our test set that 
was kept aside for testing during the initial 70:20:10 data split. This 
test set had 200 unique cases and the model was able to correctly 
classify 196 of them as either “Fire Conditions Present”, or “Fire 
Conditions Not Present”. This equates to a final accuracy of 98%.
DISCUSSION
The primary purpose of this study was to develop a neural network 
that could accurately detect wildfire conditions using environmen-
tal factors as inputs. Earlier research (Y.O. Sayad, H. Mousannif, & 
H.A. Moatassime, (2019)) had a similar approach by using NDVI 
imagery and LST (Land Surface Temperature) measurements as in-
puts for an artificial neural network. However, for this study, LST 
was not used and instead opted for a wider array of environmental 
conditions that would allow for greater diversity and breadth in 
the input data. Furthermore, another approach (S.R. Coffield et al, 
2019) utilised neural networks to predict the final size of wildfires 
after ignition. Although final fire size prediction after ignition was 
not the focus of this study, it is seen as an exciting future addition. 
No study to our knowledge however used K-means clustering as 
a method for fuel moisture quantification, and although this study 
achieved high levels of accuracy, subsequent research could be 
conducted to go more in-depth into the technique’s potential.
CONCLUSION
With this research, artificial neural networks (ANNs) were success-
fully constructed and trained to classify regions on whether or not 
wildfire conditions were present based on environmental condi-
tions inputs. Relying on current methods, firefighters must rely on 
inaccurate and highly subjective human inference and experience. 
However, by using a myriad of environmental conditions based on 
the Canadian Forest Fire Weather Index System, and by using new 
innovative techniques such as k-means clustering for fuel moisture 
quantification on NDVI imagery, a dataset was created which was 
used to train an artificial neural network. By taking advantage of 
highly optimized hyperparameters and neural network architec-
tures, this model achieved an accuracy of 98% during testing. This 
has successfully demonstrated the effectiveness of our technique 
and will provide major leaps to the fields of fire dynamics, sustain-
able forestry management, and wildfire danger mitigation.
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