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Wildfires are one of the most devastating and harmful natural disasters that occur in Canada every year. Firefighters require the best 
tools and equipment to fight these wildfires and limit their damage. Drones are becoming an increasingly useful asset to firefighters for 
wildfire monitoring and assessment. This project leverages deep learning to create a novel video-based fire detection system to add fire 
recognition and automation capability to drones. Several state-of-the-art deep learning models were trained and compared. Approxi-
mately three thousand images of fire were scraped from the web or found from smaller datasets and then labeled. Various amounts of 
data were augmented, and different types of augmentations were used to increase the size of the dataset. Additional experimentation 
was done with the training batch size, confidence threshold and intersection over union (IOU) threshold to obtain the greatest mean 
average precision (mAP) for fire detection. Unity Real-Time Development Platform was used to simulate a fire front and to automate 
drone movement. An automation algorithm was designed to assess recognized fire in video and output future movement. Specifically, 
the drone was tasked to fly parallel to a stabilized fire front by considering the distribution of fire across an image. In addition to this 
algorithm, a DJI Tello drone was automated using Arduino technology to fly between GPS coordinates in the real world and send 
alerts if fire is detected. The greatest mAP value (@IOU 0.5) was obtained by YOLOv3 at 89.5% and 98.7%. In the simulation, the 
drone was able to maintain a relatively close proximity to the stabilized fire line and GPS based navigation acts as a failsafe. Data 
preparation significantly impacts the performance of the model suggesting that certain labeling and augmentation techniques make 
patterns and features of fire more distinct and recognizable. In the simulation, the drone is able to handle general movement but cannot 
perform more intricate movements such as making tight turns in succession.  Due to the high AP and fast inference speed of the mod-
el, this system is viable for real time fire detection. Testing demonstrates that automated drones may have the potential for increasing 
the efficiency of wildfire monitoring and providing firefighters with critical information. 

INTRODUCTION
Every year, approximately eight thousand wildfires burn across 
Canada and damage over 2.5 million hectares of land (Statistics 
Canada, 2019). In British Columbia alone, an average of 300,000 
hectares are burnt by wildfires causing 260 million dollars in 
destruction every year (BC Wildfire Service, 2020). Recently, 
drones have become useful tools for firefighters. (Shen, 2018) 
Wildfire drones survey the fire and provide critical monitoring 
information that firefighters need to reduce the damage a wildfire 
can cause. Tasks such as fire line monitoring, hot spot location, 
wildfire and destruction mapping and real time aerial video feed 
assessment can be conducted through wildfire drones (Savvides, 
2018). However, human-operated drones are not the most efficient 
allocation of time and resources. Furthermore, they are difficult 
to operate in high stress situations and can put firefighters at risk. 
(Savvides, 2018) 

In this paper, I investigate a potential system for wildfire 
drone automation using deep learning object detection models for 

fire recognition. Autonomous drones would be able to fly along 
a fire line, map the area and send data to firefighters. Automated 
drones have the possibility of improving wildfire monitoring effi-
ciency and effectively providing firefighters with critical informa-
tion on the fire.  

Previous work in wildfire drone automation proposed the 
idea of GPS navigation of drone swarms guided by high altitude 
UAVs. (Afghah et al., 2019) However, high altitude UAVs are 
very expensive and drone swarms are very difficult to coordinate 
(Zhu et al., 2015). Some developments of autonomous drones for 
disaster relief reconstruct indoor settings in 3D and using those 
reconstructions for autonomous flight and performing intricate 
movements (Apvrille et al., 2014). My approach focuses on the 
automation of a single drone independent of other drones in the 
area. The movement of the drone is determined by the location of 
the surrounding fire and is not limited by obstacles and barriers 
which are present in an indoor setting.  

It is critical to have an accurate fire detection system as a 
base for drone automation and wildfire monitoring. Most previous 
video-based fire detection systems use hand-crafted features such 
as spatial, temporal and color characteristics of fire to perform 
recognition (Phillips et al., 2002, Toulouse et al., 2015, Toulouse 

This work is licensed under: 
https://creativecommons.org/licenses/by/4.0



THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 2
©  Yadav 2020

2

et al., 2017). Although in recent years, there has been an interest 
in leveraging convolutional neural networks (CNN) for fire image 
classification. 

A CNN adjusted from GoogleNet was used to classify im-
ages as fire or non-fire (Muhammed et al., 2018). Other devel-
opments include a CNN which performs patch identification on 
images of fire (Zhang et al., 2016). However, those CNNs lack 
localization functionality, so they cannot identify where the fire 
is within an image. I implemented fire detection using state-of-
the-art object detection models which can identify the position of 
the fire within an image without the use of hand-crafted features. 
Several deep learning models were trained and compared to de-
termine the most suitable model for fire detection. This approach 
allows for robust and accurate fire detection while still maintain-
ing the ability to run in real time on low cost devices (Vidyavani 
et al., 2019). Also, the models are very versatile because the 
training data includes fires in many different contexts, from small 
localized fires to larger forest and bush fires. The use of deep 
learning object detection models for fire recognition and automat-
ing drones can offer an efficient system for wildfire monitoring.  

METHODS
Digital images of fire were scraped from the web or collected 
from smaller pre-existing datasets. The FireSmoke, FireDetec-
tionImage and FlickrFireSmoke (DeepQuestAI, 2019, Cair ,2017, 
Cazzolato T. Mirela et al., 2017) datasets were used. Images with 
low resolution (below 200 by 200 pixels), low fire visibility, and 
inaccurate representations of fire were discarded (supplementary 
figure 1). This includes images in which the fire was completely 
obstructed by smoke or was too small and blurred to be recog-
nized distinctly as fire. 

Negative examples that contained red objects (e.g. fire 
hydrants) were web scraped and added to the dataset. The dataset 
contained a total of 3057 images comprised of 2732 images of fire 
(totaling 8000 instances) and 325 images of no fire. A test set of 
100 images of fire in high risk emergency situations and another 
test set of 50 single flame fire images (e.g. campfires) were com-
piled (supplementary figure 2). 

The images were annotated using Microsoft VOTT (Visual 
Object Tagging Tool) to specify bounding boxes around the fire 
objects. Fire was annotated using 2 different labeling strategies 
(supplementary figure 3). In the first approach, individual flames 
of a whole fire were annotated separately. While in the second ap-
proach, fire was unsegmented and annotated as a whole regardless 
of the fact that it was composed of individual flames. 

Labeling tools such as Microsoft VOTT can often produce 
corrupted data upon export. Due to this, the training and vali-
dation loss converged to NaN, which is an undefined datatype 
resulting from an error in a numerical calculation (e.g. divide by 
zero). A python script was created to locate and discard corrupted 
data.  

Offline data augmentation was used to increase the size of the 
dataset. Image cropping, translating, rotating, reflecting, and hue, 
saturation and value (HSV) transformations were applied. Differ-
ent variations of the dataset were created based on the amount and 
type of augmented images. 

90% of the examples formed the training set and the remain-
ing 10% formed the validation set. YOLOv3 (You Only Look 
Once), YOLOv3-Tiny, YOLOv3-SPP (Spatial Pyramid Pooling), 
YOLOv4, CSResNext50-Panet-SPP, and SSD-ResNet (Single 
Shot Detector with ResNet feature extractor) were trained on the 
dataset (Redmond and Farhadi, 2017, Bochkovskiy et al., 2020, 
Liu et al., 2018). All of the models were fine-tuned from pre-
trained MSCOCO dataset weights. Since the training time for 
YOLOv3-Tiny was relatively shorter than the other models, it was 
used to perform experiments and refine the data. All of the YOLO 
models and CS-ResNext were trained with DarkNet while SSD 
was trained using TensorFlow. The images were resized to 416 by 
416 and the batch size was varied between 16 and 128. An Intel 
i5-6200U CPU was used to perform inference and test the models 
using the mAP (mean Average Precision) metric. Due to the mem-
ory limitations of the GPUs used for training, some of the training 
trials were unable to be executed at a batch size 128.

In order to perform automation, the drone was tasked to fly 
parallel to the fire front or fire line. This task was performed by 
evaluating the distribution of fire within a frame of the drone’s 
video feed. The frame was split into an n x n grid. If the center of 
a grid cell is contained within a bounding box, it is considered a 
“fire grid cell”. The drone was parallel to the fire line when the 
column-based distribution of fire grid cells was concentrated on 
the extreme right or extreme left of the video frame (depending 
on the direction the drone is facing). If this scenario was not 
achieved, the drone rotated and changed its position slightly until 
it was orientated parallel to the fire line.  

A threshold was applied at the ith column such that a grid 
cell in the jth column was considered on the “extreme” right of 
a video frame when j ≤ i. The same reasoning was applied but 
in the opposite direction when the fire line was to the left of the 
drone (supplementary figure 4). Parameters such as the threshold, 
frames per detection and the rotation speed of the drone were 
varied to find the optimal configuration.   

Unity Real Time Development Platform was used to create 
simulations for experimentation and testing of automation param-
eters. The object detection models were exported to Unity through 
serialized protocol buffers and used for inference via Net based 
TensorFlow and OpenCV. A fire line was generated which tested 
the drone’s ability to move in all directions, turn right, left etc. 
The goal of the drone was to detect the fire and fly along the fire 
line from one end to the other. Z-axis (vertical movement) was 
ignored and the drone was set at constant height above the trees to 
avoid collision. The grid size was set to 20 by 20. Drone move-
ment was evaluated by measuring the horizontal distance between 
the drone and fire line, the velocity of the drone, the amount of 
fire it is capturing with its camera and the total distance it trav-
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elled. Ten iterations of the simulation were executed for each 
configuration of the parameters. The values of the parameters 
were set to reasonable values expected of drones in reality. Any 
configuration which resulted in the drone colliding with the fire 
line (horizontal distance to fire line was 0 m) or not being able to 
complete the path was discarded.   

A secondary automation algorithm using GPS was im-
plemented in real life. A GPS module, compass module, radio 
module and an Arduino Nano were configured to a DJI Tello 
drone. The positional information and video stream of the drone 
were sent to a Raspberry Pi which performed inference, displayed 
the results via a flask application and allowed the drone to fly 
between two GPS points (supplementary figure 5).  

RESULTS
YOLOv3 Tiny was used to experiment with the data. The AP 
values were measured at a confidence threshold of 10% and the 
predictions were made on the 100-image test set. Figure 1 shows 
the difference in AP between segmented and unsegmented fire 
labeling with no data augmentation. The average AP was calcu-
lated from IOU thresholds varied between 10% and 50% with a 
step size of 10%. Unsegmented labeling performed better in every 
case. 

Further testing was done to see if data augmentation could 
improve the AP obtained from segmented fire labeling. Figure 2 
compares the performance of YOLOv3 Tiny on different amounts 
of augmented data with HSV transformations.  Also, performance 
is compared without HSV transformations (supplementary figure 
6). Disabling HSV transformation increased model performance 
by 1.1% with segmented fire labeling. A more significant effect 
is observed with unsegmented fire labeling. Figure 3 highlights 
the difference in AP on unsegmented fire labeling that used data 
augmentation but without HSV transformation. The highest AP 
achieved with unsegmented fire labeling without HSV 
transformation was 64.3% which is an 8.4% increase from 

segmented fire labeling. Interestingly, when the entire dataset 
was augmented, an AP of 64.6% AP@[0.1:0.1:0.5] was obtained 
which was on par with 50% of the dataset consisting of augment-
ed images.   

Around 400 additional images of fire were collected and 
labeled in the unsegmented format. The performance effect of 
the additional images is compared to the original amount of raw 
training data (supplementary figure 7).

YOLOv3 obtains the highest AP with unsegmented fire 
labeling and augmentation of the entire dataset without HSV 
transformations. The remaining models were trained with that 
dataset configuration. 

Figure 1: Segmented fire labeling lead to a significantly greater 
model performance at every measured batch size. The average 
difference in mAP between segmented and unsegmented fire 
labeling was 17.7%.

Figure 2: The highest performance on YOLOv3 Tiny with seg-
mented labeling was obtained when 25% of the raw data was 
augmented with a batch size of 16. 25% augmentation of the 
raw data outperforms 50% augmentation by a slight margin 
in 2 out of the three tests. Having 	augmented data leads to 
higher mAP in almost every case. Note that this is when HSV 
augmentation is applied.

Figure 3: Data augmentation increases the performance of the 
YOLOv3 Tiny model with unsegmented fire labeling. Specifi-
cally, the highest model performance is obtained when 50% of 
the raw data is augmented. 
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Figure 4 shows the AP@0.5 of the all of the models on the emer-
gency fire test set and the single flame test set.  

All of the YOLO models perform similarly. YOLOv3 
obtained the highest mAP on the emergency fire at 89.5% test 
while YOLOv3-SPP obtained a slightly lower AP of 88.3%. Also, 
YOLOv3-SPP performed slightly better on the single flame test 
with an AP of 97.81% which was 0.21% higher than YOLOv3. 
YOLOv3-Tiny had the lowest mAP out of all of the models. How-
ever, inference speed must also be considered. Figure 5 shows 
the average inference speed of the model per image tested on 100 
images. 

Although YOLOv3 Tiny had the lowest mAP of all models, its 
inference speed was around 10 to 15 times less.  

The optimal configuration for drone movement parameters 
consisted of detecting every 10 frames, a rotation speed of 0.45 
degrees per frame and a threshold value at the 5th column. The 
average horizontal distance the drone maintains from the fire line 
was approximately 10.6 meters. The average velocity of the drone 
was 1.5 meters per second. On average, the number of grid cells 
it detected per frame was 8. The total distance of the fire line was 
431.50 meters while the drone covered on average a distance of 
368.2 meters per run. Figure 6 is a graph of how much the drone 
deviated from the fire line.  

DISCUSSION
It was determined that the unsegmented labeling approach with 
augmented data (no HSV transformation) resulted in the greatest 
AP value. YOLOv3 had the highest performance with an AP of 
89.5% on the test set of emergency fire images and 97.6% on the 
single flame images.  
 	 Perhaps annotating fire with bounding boxes was not the 
most suitable method for representing the features of fire and de-
graded model performance. Certain objects are well defined by a 
rectangular box e.g. cars, pedestrians, signs etc. but sometimes fire 
is very irregular. Polygon or semantic annotation could be used to 
eliminate ambiguities and difficult edge cases for fire labeling and 
they also provide a richer representation of objects (Endres et al., 
2010). For example, some object detection applications for med-
ical imaging show that performance is better for brain detection 
than lung detection because the shape of the brain can be better 
approximated by a bounding box. (Rajchl et al., 2016) 

Figure 4: Performance on the emergency fire test set was con-
sistently lower across all models than the single flame test set. 
YOLOv3 obtained the highest mAP on the emergency fire test 
set and YOLOv3-SPP obtained the highest mAP on the single 
flame test set. 

Figure 5: YOLOv3-tiny and SSD-ResNet stand out with the 
lowest and highest inference speed respectively. All of the other 
models have similar inference speeds.

Figure 6: This shows the drone deviation for a single run of the 
simulation. While the drone movement was relatively stable for 
some periods of time, there are large increases indicating that 
the drone deviated before returning to its original position.  
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Many ambiguities arise when labeling fire with bounding boxes. 
For example, two flames which are connected at the base can be la-
beled as two independent flames or as one large flame. Segmenting 
fire creates additional patterns the object detector must recognize. 
There are more shapes, sizes and illumination and angles to con-
sider. Notably, contextual information about the location and shape 
of the whole fire is required for segmentation. In contrast, labeling 
a region of fire in its entirety without flame segmentation can de-
crease the complexity of the task and allow the model to recognize 
consistent patterns in the data.  
 	 Usually, an increase in augmented data prevents the model 
from overfitting during training which leads to better performance 
(Shorten and Taghi, 2019). However, an increase in augmented 
data in the segmented fire dataset did not consistently improve the 
performance of YOLOv3 Tiny. This inconsistency might emerge 
from the fact that segmented fire detection is already a complex 
task. Increasing the amount of augmented data can result in unnec-
essary noise and irregularity making object detection more diffi-
cult. Furthermore, model performance increased when HSV trans-
formations were removed. Since most of the features of fire are 
seen in the red spectrum, HSV transformations create unrealistic 
data by shifting the color of fire, which creates variance and leads 
to inconsistent results.  

Interestingly, there is not a significant difference in AP even 
when data augmentation is applied to the unsegmented fire data-
set. Possibly because there is not enough augmented data to create 
large changes in performance. The greatest ratio of augmented data 
to raw data was 1:1. Perhaps a larger ratio such as 2:1 or 3:1 is 
needed to observe significant effects of data augmentation. In addi-
tion, there was only one test for every batch size and ratio. Testing 
each batch size and ratio 3 to 4 times and averaging the results can 
be a better indication of the performance on the dataset. 

There is a notable difference in AP between the emergency 
fire images test set and the single flame test set. Since a single flame 
has a much simpler structure and shape than a multi-flame fire, its 
patterns are more recognizable and distinct making it easier to de-
tect. Also, fire in emergency situations is usually clouded by smoke 
and is less distinct against the background making it more difficult 
to detect. The ability to perform well on both test sets is representa-
tive of the difficulty and diversity of the training data.

The 3000 images in the dataset include fire in many different 
contexts and visibility settings. Large fires such as forest, bush, and 
house fires are included in the dataset with smaller, more localized 
fires. Therefore, the model is able to generalize and perform well 
on difficult and diverse test sets. Other object detection approaches 
either lack a large dataset (500-1000 images) or their dataset is too 
homogenous (Sucuoğlu et al., 2019, Barmpoutis et al., 2019). A 
97% AP obtained by YOLOv3 on the single flame test set demon-
strates that it could be used in real settings (e.g. homes, offices and 
other public areas) where fire usually begins as a small flame. Also, 
it is versatile enough to perform in settings where there is a large 
high-risk fire, such as forest fires. 
Figure 7 shows some examples of the detections made on both test 
sets. 

Another important consideration is the speed and accuracy trade-
off between YOLOv3 and YOLOv3 Tiny. YOLOv3 is fast enough 
for real time detection but is not at the level of human visual cog-
nition. YOLOv3 Tiny can operate well within that speed range al-
though with a lower accuracy.  
 	 While YOLOv3 obtained an AP@0.5 in the 90% range, it 
can be improved for inference by applying some computationally 
inexpensive post processing steps. The confidence threshold of the 
detections could be changed dynamically when implemented in a 
video feed. If consecutive frames show a high confidence thresh-
old, then the threshold could be lowered to detect more fire. If con-
secutive frames show a low confidence threshold then the thresh-
old can be increased to eliminate those detections. Also, YOLOv3 
could be used for initial detection and when the detections surpass 
a 90% confidence threshold (very high chance there is fire) then 
the model could be switched to the Tiny version for faster perfor-
mance.  
 	 Further improvement could be made to the model by in-
creasing the size of the dataset. Manual and automated web scrap-
ing can be used to find an additional 1000 to 2000 images. A pseu-
do-labeling process could be executed by having an already trained 
model run predictions on the new data. Any bad predictions would 
be relabeled manually, and the model would be retrained with the 
larger dataset.   
 	 While evaluating movement of the drone using the dis-
tribution of fire in the surrounding area offers more generalized 
movement it does not handle intricate movement very well. This 
was demonstrated in the large spikes in the graph for drone move-
ment. The drone deviated from the path of the fire line when it 
encountered sharp turns or corners. Also, the distance the drone 
traveled is another indicator that it didn’t perform with intricate 
movement. The total distance of the fire line was approximately 
431 meters while the drone only traveled on average 370 meters. 
This means that the drone wasn’t properly going around turns or 
corners, rather it was cutting across them which increased its dis-
tance from the fire line. Although, the drone did correct itself even-
tually, the situation isn’t ideal.  

Figure 7: Images A, B and C show detections made on the 
single flame dataset. Images D, E and F show detections made 
on the high-risk fire emergency dataset. These detections 
demonstrate the model’s ability to perform in many different 
settings and conditions.
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Furthermore, the amount of fire detected by the model was low. 
The average number of fire grid cells per image was expected to 
be around 50-110. When the threshold is at the 5th column and the 
drone is flying parallel to the fire line, the number of grid cells on 
the right is 100.  The number of detected fire grid cells should also 
be around that number. However, the amount of fire detected per 
image was around 8 grid cells. Some reasons for this include the 
fact that the models weren’t trained with fire from Unity, and there-
fore didn’t detect fire as well. Also, the results of the same model 
(YOLOv3-Tiny) in TensorFlow differ when it was implemented in 
Unity even though they should be the same (supplementary figure 
8).

In Unity, the model tended to detect fire that was closer to the 
drone. This does offer some advantages because the direction the 
drone moves should be more influenced by the fire that is closer to 
the drone. But over time, the lack of detection for distant fires made 
the movement of the drone more imprecise and caused it to deviate.  

Perhaps, instead of solely relying on a single algorithm (fire 
distribution) other techniques could be incorporated that handle 
specific scenarios (e.g. making a turn). GPS based navigation can 
always act as a failsafe if the main automation algorithm malfunc-
tions. Since the drone would be conducting general monitoring and 
surveillance, it is not vital that the drone executes every movement 
to the exact GPS point and small errors in movement don’t hinder 
the drone’s ability to do its task.  

It’s important to consider that the simulation lacks details that 
are present in reality and is limited by the physics engine of the 
platform. Certain parameters such as the speed and height of the 
drone are kept constant and ideal weather conditions and visibility 
were assumed which is not necessarily consistent with real life. 
Smoke may also hinder the ability to detect fire, but its effect can 
be limited since the drone is viewing the fire line from the side 
and not directly above. Also, NIR (near-infrared) imaging might be 
able to reduce smoke hindrance and provide pictures that still re-
tain the ground truth of the fire (Rossi et al., 2013). Real life testing 
of the drone with controlled fires needs to be done to validate the 
results of this project and to collect more image data on fires. Due 
to the limits of fire detection and automation, this project shows 
more potential for monitoring wildfires that are mostly under con-
trol and stabilized at the fire line rather than highly active wildfires.  
Future work can focus on improving the accuracy and speed of fire 
detection. One avenue for this is through knowledge distillation 
where a smaller model is trained to predict the inputs of a larger 
model (Hinton et al., 2015). Mapping functionality could be added 
to the drone in the form of triangulating the position of the fire 
based on the detections made in the video feed as the drone is mov-
ing. More details such as wind forces can be added to the simula-
tion to better represent reality. Instead of explicitly programming 
instructions for the drone, a reinforcement learning model can be 
trained in the simulation. Further drone movement testing could be 
implemented through real life testing with candle flames.      

CONCLUSION
 In this paper, I have presented a lightweight, video-based fire de-
tection system by leveraging the advantages of deep learning. This 

system was applied for drone automation through simulations and 
GPS navigation. I experimented with data preparation and model 
parameters to optimize the AP of object detection models for fire 
recognition. This system has the possibility of making fire detec-
tion more accurate and reliable for firefighting technology. The 
testing and evaluation done for drone automation shows its poten-
tial for practical application in wildfire monitoring.  Automated 
drones may be able to provide critical information to firefighters so 
they can effectively control and reduce the environmental damage 
caused by wildfires.  
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SUPPLEMENTARY FIGURES
Figure 1: Example of a discarded image.
Figure 2: Examples of images in the test sets. 
Figure 3: Example of the different methods of labeling. 
Figure 4: A simple example demonstrating how the distribution of 
fire in a frame is analyzed.
Figure 5: Diagram of the components involved in the fire detection 
system. 
Figure 6: Graph which shows the performance of YOLOv3 Tiny 
using data augmentation without HSV transformations.
Figure 7: Performance of YOLOv3 Tiny with varying amounts of 
raw data. 
Figure 8: Detection example comparing the detection made in Uni-
ty and the detection made in TensorFlow. 

Supplementary Figure 1: The only distinguishing feature of 
the fire in this picture is the light. However, the light emitted 
from the fire is a small portion of the image and is very similar 
to the other non-fire emitted light. 

Supplementary Figure 2: The top 3 images are from the 
50-image single flame test set. The bottom 3 images are from 
the high-risk emergency fire situations test set. 
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Supplementary Figure 3: Images A and B show segmented 
labeling where the fire is labeled according to the individual 
flames. Image C and D show their unsegmented counterpart 
where the whole fire is labeled as one object.

Supplementary Figure 4: As a simple example, consider a 15 
by 15 grid. The red line represents the threshold and the yel-
low grid cells represent fire grid cells and white is background. 
Most of the fire is on the right side of the grid and only a few 
small patches are in the middle. This means that the drone is 
orientated parallel to the fire line (as most of the fire is on the 
right). The drone can move forward in the direction of the blue 
circle. With a larger grid the precision can be increased.

Supplementary Figure 5: An Arduino Nano on the DJI Tello 
interfaces with a Neo6m GPS, LSM303 compass and NRF24 
radio module. The positional information was sent to a Rasp-
berry Pi, which was also connected to a radio module. The 
drone video feed was sent to the Raspberry Pi via a Wi-Fi con-
nection. Inference was performed and results are displayed in 
a Flask application. 

Supplementary Figure 6: Data augmentation without HSV 
transformations increases the performance of YOLOv3 Tiny 
compared to no augmentation across all batch sizes. The 
greatest performance is obtained when 50% of the raw data is 
augmented.

Supplementary Figure 7: YOLOv3 Tiny trained on 2700 raw 
images consistently has a higher performance than being 
trained on 2500 raw images.

Supplementary Figure 8: The thicker grey bounding box 
shows the detection made by YOLOv3-Tiny in Unity and the 
thinner bounding box shows the detection when the same 
image was inputted into YOLOv3 in TensorFlow. 


