
THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022

1

The Final Countdown:
How Much Longer Until Quantum Computers Become

the Next Cybersecurity Threat
Ria Patel

16 | Nepean, ON
Awards Bronze Medal at Canada-Wide Science Fair 2021 | Best in Age category (Intermediate) at Ot-
tawa Regional Science Fair 2021 | Divisional award: Information Challenge award (Intermediate) at

Ottawa Regional Science Fair 2021 | Special award: Honeywell Aerospace at Ottawa Regional Science
Fair 2021 | Interdisciplinary award: First Place (Intermediate) at Ottawa Regional Science Fair 2021

Upon learning about the exponential power of quantum computers, I was concerned about the threat that they pose to encryption algo-
rithms which are currently believed to be unbreakable. I wanted to answer the question: when will quantum computers be able to hack
even the most secure encryption? I used Python programming to model how a 64-qubit quantum computer could crack AES-128 bit,
RSA-1024 bit, and SHA-256 hashing algorithm-based encryption. Since programming a real quantum computer was not feasible, I used
a regular computer to simulate the iterations it would take a simplified quantum computer to crack the encryption. After testing all three
simulations, it can be concluded that a 64-bit quantum computer would still take an astronomical number of iterations to crack modern
encryption. However, as this technology grows and quantum computers with the same number of qubits as our computers have bits
(about 4 × 1012) are built, quantum hacking could become a real threat.

INTRODUCTION
Everyday, billions of people around the world send trillions of mes-
sages, memes and tweets online. This information is kept secure by
encryption: the process of encoding information so that only the in-
tended recipient can decode it. Upon learning about the exponential
power of quantum computers, I was concerned about the threat that
they pose to encryption algorithms which are currently believed to
be unbreakable. Hundreds of millions of people around the world
use the internet for confidential banking transactions and this num-
ber is increasing thanks to the rapid adoption of cryptocurrencies.
Cryptocurrencies depend on blockchain: a system that ensures the
legitimacy of digital transactions while maintaining complete ano-
nymity between parties. If quantum computers could break block-
chain encryption, it would be an international catastrophe.

I wanted to answer the question: when will quantum comput-
ers be able to hack even the most secure encryption? I used Python
programming to model how a 64-qubit quantum computer could
crack AES-128 bit, RSA-1024 bit, and SHA-256 hashing algo-
rithm-based encryption. Since programming a real quantum com-
puter was not feasible, I used a regular computer to simulate the
iterations it would take a simplified quantum computer to crack the
encryption. Additionally, I could not reasonably compare the effi-

ciency of a quantum computer to a classical computer, because
a classical computer would take 1 billion billion years to hack
AES-128 using the brute force of my simulated quantum comput-
er (Arora, 2021).
BACKGROUND
Classical computers store information at the most basic level in
binary bits, meaning a 1 or a 0. Information is securely communi-
cated by encrypting the bits that represent the message. Texts and
emails are encrypted using AES-128 bit symmetric keys. These
determine how every 128 bit block of the message is encrypted
before the message is sent. The receiver must have the same key
to decrypt the message, hence the term “symmetric” (Franklin,
2020). To crack AES-128 without the symmetric key, a computer
would need to brute force 2128 computational possibilities, far be-
yond the reach of classical computing (Wood, 2011).

Another kind of encryption is RSA-1024. Unlike AES-128,
this is asymmetrical because it uses two different keys. The first
key is composed of two large prime numbers, and the second key
is their semiprime product. The semiprime product is the public
key, meaning it is available to the public and can be used to en-
crypt any message. It is 1024 decimal digits long, hence the name
RSA-1024. The two prime numbers make up the private key and
are needed to decrypt any message. Although the semiprime prod-
uct of two very large prime numbers can be computed very easily,
going the other way around to factor a semiprime product into

This work is licensed under:
https://creativecommons.org/licenses/by/4.0

THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022 2

two very large prime numbers, to decrypt a message without the
private key, is very difficult. (Krupansky, 2018). However, unlike
AES-128, RSA encryption is vulnerable to attack from classical
computers. Larger and larger RSA keys have been broken over
the past few decades as classical supercomputers become stron-
ger and factoring algorithms become more efficient. The most
recent breakthrough was when Zimmermann et al. (2020) hacked
the RSA-250.

Finally, the SHA-256 hashing algorithm is commonly used
for online security protocols. It has recently been used in block-
chain technology, which will be integral in our future cryptocur-
rency economy. SHA-256 is not actually an encryption algorithm
like AES-128 and RSA-1024. It is a “hash” function that reduces
the entire message being sent to a unique set of 256 bits. The
SHA-256 hash is not meant to be decrypted, because it is simply
a signature to verify the authenticity of the message, like in bank-
ing transactions (Stevens, 2020). In fact, there is no way to go
from the SHA-256 hash back to the original message, because the
original message could be of any length. Even though a quantum
computer could test possibilities much more quickly than a clas-
sical computer, there is no limit to the number of possibilities that
created a 256-bit hash. However, this does not mean SHA-256 is
completely secure. Multiple messages could generate the same
SHA-256 hash, so one could try and trick the system into verify-
ing a false message as if it was the original text. This is known as
a “collision” and it allows the hacker to send false information to
the system, like improper cryptocurrency transactions. Although
a collision for SHA-160 has been found (Stevens 2017), SHA-
256 still remains secure against classical computers. However,
quantum computers may be able to find collisions much more
easily.

Quantum computing operates on the quantum physics prin-
ciples of entanglement and superposition (Quantumly, 2017). En-
tanglement occurs when the states of two particles are linked such
that measuring the state of one allows you to definitively know
the state of the other particle without measuring it. Superposition
is the collection of all the states that a quantum particle experi-
ences simultaneously, and it also describes the probability of each
state occurring when the particle is measured. While traditional
computing uses bits that can take on a value of 0 or 1, quantum
computers use qubits that exist as a superposition of 1 and 0 until
measured (Aaronson, 2007. p. 68). In terms of computing pow-
er, since qubits are a superposition of multiple states, and those
states can be entangled, quantum computers can test multiple
possibilities at the same time and then extract a solution using a
Quantum Fourier Transform (QFT) (MinutePhysics, 2019).

The QFT is the quantum implementation of the Discrete
Fourier Transform (DFT). The DFT computes the frequency do-
main representation of data provided in the time domain, reveal-
ing detailed information about the hidden frequencies that may
not be obvious in the time domain. The QFT performs a similar

operation to the superposition of quantum particles (QuTech
Academy, 2021), and is ultimately used in Shor’s algorithm to
factor large semiprime numbers.
HYPOTHESIS
I hypothesized that it would take a quantum computer of a con-
trolled size (64 qubits for AES-128 and RSA-1024, 1050 for
SHA-256) the highest number of iterations of my program to
crack the SHA-256 hashing algorithm, the second highest num-
ber of iterations to crack AES-128, and the least number of to
crack RSA-1024.

The SHA-256 hashing algorithm generates a 256-bit key, so
there are 2256 possible hashes to test. This is the most of any of
the encryption algorithms, so I predicted it would take the most
time to crack. The AES-128 encryption uses a 128-bit string, so
there are 2128 possible strings to test. The RSA-1024 encryption
can be broken theoretically using Shor’s algorithm that efficient-
ly factors large primes using quantum computers, so I predicted
that it would take the least number of iterations.
MATERIALS
The materials used for this project are a Wing Personal IDE
for Python 3.3 and Python libraries ‘random’, ‘time’, ‘numpy’,
and ‘statistics’. From the ‘statistics’ library, I used the function
‘mode’.
VARIABLES
The control variables in this experiment are the program I wrote
for each type of encryption, the size of the quantum computer,
the fixed operating speed of quantum computers, and the fixed
operation speed of my own computer. If I made any error in any
of these parts, it would be equally reflected across all my results.
The independent variables were the type and size of encryption
I tried to crack. The dependent variable was the number of iter-
ations it would theoretically take a quantum computer to crack
the encryption based on my simulation.
METHODS
Since I didn’t have access to any quantum computers, I used the
Python programming language to model them. I designed a pro-
gram that follows the steps a real quantum computer would take
to crack the different encryption algorithms. I designed three
separate programs to calculate the speed a 64-qubit quantum
computer would take to crack AES-128 bit, RSA-1024 bit, and
SHA-256 hashing algorithm based encryption.

AES-128: A quantum computer can test 64 qubits worth of
possibilities at once then use the QFT to pick out the right one.
A brute force attack against AES-128 can be implemented by
calculating the number of iterations it would take 64 qubits to
produce keys of 128-bit length until a match is found to the sym-
metric key. See Appendix A for the full code.

RSA-1024: The following procedure was based on Minute-
Physics, 2019 and the Emerging Technology from the arXiv ar-
chive page, 2019. Shor’s algorithm can be used to factor a large

THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022

3

semiprime N. The algorithm starts by guessing a prime factor
of N, represented as g. If g is not a factor of N, then g(p/2)±1,
where p is a positive integer less than N, are two numbers very
likely to share factors with N (though they themselves may not
be factors of N). A quantum computer can find p by making and
manipulating a superposition of all pairs of p and their respec-
tive remainders, r, when N is divided by gp. The goal is to find
a value x in the set of all p so that gx=mN+1, where m is some
positive integer. This is equivalent to saying that g(x/2)±1 share
factors with N.

To find x, the r component of the (p,r) superposition is mea-
sured, leaving the quantum computer with all pairs (p,r) with
the same r value. This occurs because measuring the superpo-
sition collapses it into one value. The trick is to notice that if
gx=mN+1 and gp=mN+r, then g(p+qx) also equals mN+r, where
q is any positive integer. Therefore, all p in this superposition
are sequentially x apart from each other. A QFT can extract x
from superposition, and thus the quantum computer would be
able to find two numbers g(x/2)±1 which are very likely to share a
factor with N. After 10 guesses, there is a 99% chance that those
numbers share a factor with N. Once the numbers are found,
the Euclidean algorithm can be used to break up g(x/2)±1 and N
into their factors and find two prime factors of N, which are the
private keys. See Appendix B for the full code.

SHA-256: A brute-force collision was simulated as fol-
lows. Instead of creating random messages and hashing them
into keys, a random 256-bit hash was chosen to be the starting
key. Then, random strings of 256 bits were generated until a
string matched with the key. The assumption is that the ran-
dom hashes can all be created from unique messages. This was
implemented by calculating the number of iterations it would
take 64 qubits to test random hashes of 256-bits until a match
with the key was found. A quantum computer can test many
possibilities at once then use the QFT to pick out the right one
(Sahu, 2021). See Appendix C for the full code.

For every encryption algorithm, 10-20 random keys were
tested. Instead of using the full-length keys (e.g. 128 bits),
they were scaled down empirically to have a reasonable run
time. For example, in the AES-128-bit encryption, a 32-bit key
was tested with a 16-qubit computer and then the resulted were
scaled up by four to get to 128 bits with a 64-qubit comput-
er. The results would scale linearly because the exponential
increase in key possibilities is balanced by the exponential
increase in computing. In the results, this is documented as
“average simulated iterations,” which are the values that were
used in the actual program and “average calculated iterations,”
which are the values that are scaled back up to the full key
lengths and full number of qubits. See Table 1 for the sim-
ulated key sizes and the calculated theoretical key sizes and
see Table 2 for the simulated number of qubits and theoretical
number of qubits.

Table 1. Length of keys/hashes in each simulation. The
“Length of Partial Key” column contains the length of each
key tested in the program. The “Theoretical Length of Full
Key” column contains the scaled length of each key.

Encryption Method Length of Partial
Key:

Theoretical Length
of Full Key:

AES-128 32 bits 128 bits
RSA-1024 10-13 bits 1024 bits
SHA-256 8 bits 256 bits

Table 2. Qubits used in each simulation. The “Number of
Simulated Qubits for Partial Key” column contains the
number of qubits inputted in the program. The “Theoretical
Number of Qubits for Full Key” column contains the scaled
number of qubits for a full key length.

Encryption Method Number of Sim-
ulated Qubits for
Partial Key:

Theoretical Num-
ber of Qubits for
Full Key:

AES-128 16 64
RSA-1024 4 64
SHA-256 4 1.2061 x 1050

Figure 1. Number of iterations the simulated quantum com-
puter took to break the AES-128, RSA-1024, and SHA-256
algorithms.

RESULTS

THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022 4

DISCUSSION
The mean extrapolated iterations to hack the encryptions were
3.74051 x 10206 for the SHA-256 hashing algorithm, 1.126 x 10164
for the RSA-1024 encryption, and 2.87 x 1019 for the AES-128 en-
cryption. However, the mean simulated iterations for a partial key
were 1744776.6 for SHA-256, 44751.6 for AES-128, and 27.35
for RSA-1024. SHA-256 consistently took the longest, whereas
RSA-1024 and AES-128 flip flipped due to the change in key
length. The extrapolated results are interesting as the RSA-1024
is the longest and most memory intensive key, four times that of
the SHA-256.
CONCLUSION
After testing all three simulations, it can be concluded that a 64-
bit quantum computer would still take an astronomical number of
iterations to crack modern encryption. The current largest quan-
tum computer by IBM boasts 65 qubits so theoretically they could
crack AES-128 if they tried for a very long time. However, as this
technology grows and quantum computers with the same number
of qubits as our computers have bits (about 4 × 1012) are built,
quantum hacking could become a real threat.
FUTURE STEPS
If I were to redo this project, I would consider longer testing times
since my results were based on testing times of less than a minute.
I would also like to physically verify my simulated programs, so
they are more accurate and reflective of actual quantum comput-
ers and cryptography.
ACKNOWLEDGEMENTS
I would like to recognize everyone who has helped me with this
project. My family, who encouraged me to solve hard problems;
and my teachers, who taught me how to find solutions. I attended
the 2020-2021 Python in Motion math enrichment class taught
by Professor Alexey Godin from Carleton University. The insight
from that course helped me develop my own programs.

WORKS CITED
Aaronson, S. (2008). The Limits of Quantum. Retrieved from http://www.cs.vir-

ginia.edu/~robins/The_Limits_of_Quantum_Computers.pdf
Aaronson, S. (2007). Shor, I’ll do it. Retrieved from https://www.scottaaronson.

com/blog/?p=208
Arora, M. (2012, May 7). How Secure is AES against brute force attacks? Re-

trieved from https://www.eetimes.com/how-secure-is-aes-against-brute-
force-attacks/

Emerging Technology from the arXiv archive page. (2019, May 30). How a
quantum computer could break 2048-bit RSA encryption in 8 hours. Re-
trevied from https://www.technologyreview.com/2019/05/30/65724/how-
a-quantum-computer-could-b reak-2048-bit-rsa-encryption-in-8-hours/

Franklin, R. (2020, March 13). AES vs. RSA Encryptions; What Are the Dif-
ferences? Retrieved from https://www.precisely.com/blog/data-security/
aes-vs-rsa-encryption-differences

Krupansky, J. (2018, September 30). Some Preliminary Questions About Shor’s
Algorithm for Cracking Strong Encryption Using a Quantum Comput-
er. Retrieved from https://jackkrupansky.medium.com/some-prelimi-
nary-questions-about-shors-algorithm-fo r-cracking-strong-encryption-
using-a-quantum-b3470546249c

Minutephysics. (2019, May 22). How Shor’s algorithm factors 314191. Re-
trieved from https://www.youtube.com/watch?v=FRZQ-efABeQ

Quantumly. (2017). Where do quantum computers get their speed. Retrieved
from http://quantumly.com/quantum-computer-speed.html

QuTech Academy. (2021, January 26). Quantum Fourier Transform by MSc
students Elsie Loukiantchenko & Maria Flors Mor Ruiz. Retrieved from
https://www.youtube.com/watch?v=MBfyQ5wqmvw

Sahu, M. (2021, January 4). Cryptography in Blockchain: Types & Applica-
tions [2021]. Retreived from https://www.upgrad.com/blog/cryptogra-
phy-in-blockchain/

Schadeck, W. X. (2017, May 27). What is blockchain, really? (An intro for regu-
lar people). Retrieved from https://medium.com/@wen_xs/what-is-block-
chain-really-an-intro-for-regular-people-e51578d98a96

Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y. The first col-
lision for full SHA-1. Retrieved from https://shattered.io/static/shattered.
pdf

Stevens, R. (2020, May 12). Quantum computers could crack Bitcoin by
2022. Retrieved from https://decrypt.co/28560/quantum-comput-
ers-could-crack-bitcoins-encryption-by-2022

Wood, L. (2011, March 21). The Clock is Ticking for Encryption. Retrieved
from https://www.computerworld.com/article/2550008/the-clock-is-tick-
ing-for-encryption.htm l#:~:text=But%20using%20quantum%20technol-
ogy%20with,crack%20a%20128%2Dbit%20key.

Zimmerman, Paul. (2020, February 28). Factorization of RSA-250. Retrieved
from https://lists.gforge.inria.fr/pipermail/cado-nfs-discuss/2020-Febru-
ary/001166.html

Table 3. Iterations of the program needed to hack each sim-
ulation. The “average simulated iterations” column contains
the exact numbers that came out of the program. The “aver-
age calculated iterations” column contains the scaled version
for a full key length.

Encryption Method Mean Simulated
Iterations for a
Partial Key:

Mean Extrapolated
Iterations for a Full
Key:

AES-128 44751.6 2.87 x 1019

RSA-1024 27.35 1.126 x 10164

SHA-256 1744776.6 3.74051 x 10206

THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022

5

APPENDICES

Appendix A. AES-128 simulation code.

Appendix B. RSA-256 simulation code.

Appendix C. RSA-1024 simulation code.

RIA PATEL
Ria Patel is a high school student in Ottawa, passionate about STEM. She enjoys
learning about developments in new technologies like quantum computing. Outside
of academics, she can be found running, playing the piano, listening to music, or
enjoying a good book.

THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 3 | Issue 6
© Patel 2022 6

Appendix C continued. RSA-1024 simulation code.

