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Upon learning about the exponential power of quantum computers, I was concerned about the threat that they pose to encryption algo-
rithms which are currently believed to be unbreakable. I wanted to answer the question: when will quantum computers be able to hack 
even the most secure encryption? I used Python programming to model how a 64-qubit quantum computer could crack AES-128 bit, 
RSA-1024 bit, and SHA-256 hashing algorithm-based encryption. Since programming a real quantum computer was not feasible, I used 
a regular computer to simulate the iterations it would take a simplified quantum computer to crack the encryption. After testing all three 
simulations, it can be concluded that a 64-bit quantum computer would still take an astronomical number of iterations to crack modern 
encryption. However, as this technology grows and quantum computers with the same number of qubits as our computers have bits 
(about 4 × 1012) are built, quantum hacking could become a real threat. 

INTRODUCTION
Everyday, billions of people around the world send trillions of mes-
sages, memes and tweets online. This information is kept secure by 
encryption: the process of encoding information so that only the in-
tended recipient can decode it. Upon learning about the exponential 
power of quantum computers, I was concerned about the threat that 
they pose to encryption algorithms which are currently believed to 
be unbreakable. Hundreds of millions of people around the world 
use the internet for confidential banking transactions and this num-
ber is increasing thanks to the rapid adoption of cryptocurrencies. 
Cryptocurrencies depend on blockchain: a system that ensures the 
legitimacy of digital transactions while maintaining complete ano-
nymity between parties. If quantum computers could break block-
chain encryption, it would be an international catastrophe.

I wanted to answer the question: when will quantum comput-
ers be able to hack even the most secure encryption? I used Python 
programming to model how a 64-qubit quantum computer could 
crack AES-128 bit, RSA-1024 bit, and SHA-256 hashing algo-
rithm-based encryption. Since programming a real quantum com-
puter was not feasible, I used a regular computer to simulate the 
iterations it would take a simplified quantum computer to crack the 
encryption. Additionally, I could not reasonably compare the effi-

ciency of a quantum computer to a classical computer, because 
a classical computer would take 1 billion billion years to hack 
AES-128 using the brute force of my simulated quantum comput-
er (Arora, 2021).
BACKGROUND
Classical computers store information at the most basic level in 
binary bits, meaning a 1 or a 0. Information is securely communi-
cated by encrypting the bits that represent the message. Texts and 
emails are encrypted using AES-128 bit symmetric keys. These 
determine how every 128 bit block of the message is encrypted 
before the message is sent. The receiver must have the same key 
to decrypt the message, hence the term “symmetric” (Franklin, 
2020). To crack AES-128 without the symmetric key, a computer 
would need to brute force 2128 computational possibilities, far be-
yond the reach of classical computing (Wood, 2011).

Another kind of encryption is RSA-1024. Unlike AES-128, 
this is asymmetrical because it uses two different keys. The first 
key is composed of two large prime numbers, and the second key 
is their semiprime product. The semiprime product is the public 
key, meaning it is available to the public and can be used to en-
crypt any message. It is 1024 decimal digits long, hence the name 
RSA-1024. The two prime numbers make up the private key and 
are needed to decrypt any message. Although the semiprime prod-
uct of two very large prime numbers can be computed very easily, 
going the other way around to factor a semiprime product into 
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two very large prime numbers, to decrypt a message without the 
private key, is very difficult. (Krupansky, 2018). However, unlike 
AES-128, RSA encryption is vulnerable to attack from classical 
computers. Larger and larger RSA keys have been broken over 
the past few decades as classical supercomputers become stron-
ger and factoring algorithms become more efficient. The most 
recent breakthrough was when Zimmermann et al. (2020) hacked 
the RSA-250.

Finally, the SHA-256 hashing algorithm is commonly used 
for online security protocols. It has recently been used in block-
chain technology, which will be integral in our future cryptocur-
rency economy. SHA-256 is not actually an encryption algorithm 
like AES-128 and RSA-1024. It is a “hash” function that reduces 
the entire message being sent to a unique set of 256 bits. The 
SHA-256 hash is not meant to be decrypted, because it is simply 
a signature to verify the authenticity of the message, like in bank-
ing transactions (Stevens, 2020). In fact, there is no way to go 
from the SHA-256 hash back to the original message, because the 
original message could be of any length. Even though a quantum 
computer could test possibilities much more quickly than a clas-
sical computer, there is no limit to the number of possibilities that 
created a 256-bit hash. However, this does not mean SHA-256 is 
completely secure. Multiple messages could generate the same 
SHA-256 hash, so one could try and trick the system into verify-
ing a false message as if it was the original text. This is known as 
a “collision” and it allows the hacker to send false information to 
the system, like improper cryptocurrency transactions. Although 
a collision for SHA-160 has been found (Stevens 2017), SHA-
256 still remains secure against classical computers. However, 
quantum computers may be able to find collisions much more 
easily.

Quantum computing operates on the quantum physics prin-
ciples of entanglement and superposition (Quantumly, 2017). En-
tanglement occurs when the states of two particles are linked such 
that measuring the state of one allows you to definitively know 
the state of the other particle without measuring it. Superposition 
is the collection of all the states that a quantum particle experi-
ences simultaneously, and it also describes the probability of each 
state occurring when the particle is measured. While traditional 
computing uses bits that can take on a value of 0 or 1, quantum 
computers use qubits that exist as a superposition of 1 and 0 until 
measured (Aaronson, 2007. p. 68). In terms of computing pow-
er, since qubits are a superposition of multiple states, and those 
states can be entangled, quantum computers can test multiple 
possibilities at the same time and then extract a solution using a 
Quantum Fourier Transform (QFT) (MinutePhysics, 2019).

The QFT is the quantum implementation of the Discrete 
Fourier Transform (DFT). The DFT computes the frequency do-
main representation of data provided in the time domain, reveal-
ing detailed information about the hidden frequencies that may 
not be obvious in the time domain. The QFT performs a similar 

operation to the superposition of quantum particles (QuTech 
Academy, 2021), and is ultimately used in Shor’s algorithm to 
factor large semiprime numbers.
HYPOTHESIS
I hypothesized that it would take a quantum computer of a con-
trolled size (64 qubits for AES-128 and RSA-1024, 1050 for 
SHA-256) the highest number of iterations of my program to 
crack the SHA-256 hashing algorithm, the second highest num-
ber of iterations to crack AES-128, and the least number of to 
crack RSA-1024. 

The SHA-256 hashing algorithm generates a 256-bit key, so 
there are 2256 possible hashes to test. This is the most of any of 
the encryption algorithms, so I predicted it would take the most 
time to crack. The AES-128 encryption uses a 128-bit string, so 
there are 2128 possible strings to test. The RSA-1024 encryption 
can be broken theoretically using Shor’s algorithm that efficient-
ly factors large primes using quantum computers, so I predicted 
that it would take the least number of iterations.
MATERIALS
The materials used for this project are a Wing Personal IDE 
for Python 3.3 and Python libraries ‘random’, ‘time’, ‘numpy’, 
and ‘statistics’. From the ‘statistics’ library, I used the function 
‘mode’.
VARIABLES
The control variables in this experiment are the program I wrote 
for each type of encryption, the size of the quantum computer, 
the fixed operating speed of quantum computers, and the fixed 
operation speed of my own computer. If I made any error in any 
of these parts, it would be equally reflected across all my results. 
The independent variables were the type and size of encryption 
I tried to crack. The dependent variable was the number of iter-
ations it would theoretically take a quantum computer to crack 
the encryption based on my simulation.
METHODS
Since I didn’t have access to any quantum computers, I used the 
Python programming language to model them. I designed a pro-
gram that follows the steps a real quantum computer would take 
to crack the different encryption algorithms. I designed three 
separate programs to calculate the speed a 64-qubit quantum 
computer would take to crack AES-128 bit, RSA-1024 bit, and 
SHA-256 hashing algorithm based encryption.

AES-128: A quantum computer can test 64 qubits worth of 
possibilities at once then use the QFT to pick out the right one. 
A brute force attack against AES-128 can be implemented by 
calculating the number of iterations it would take 64 qubits to 
produce keys of 128-bit length until a match is found to the sym-
metric key. See Appendix A for the full code.

RSA-1024: The following procedure was based on Minute-
Physics, 2019 and the Emerging Technology from the arXiv ar-
chive page, 2019. Shor’s algorithm can be used to factor a large 
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semiprime N. The algorithm starts by guessing a prime factor 
of N, represented as g. If g is not a factor of N, then g(p/2)±1, 
where p is a positive integer less than N, are two numbers very 
likely to share factors with N (though they themselves may not 
be factors of N). A quantum computer can find p by making and 
manipulating a superposition of all pairs of p and their respec-
tive remainders, r, when N is divided by gp.  The goal is to find 
a value x in the set of all p so that gx=mN+1, where m is some 
positive integer. This is equivalent to saying that g(x/2)±1 share 
factors with N.

To find x, the r component of the (p,r) superposition is mea-
sured, leaving the quantum computer with all pairs (p,r) with 
the same r value. This occurs because measuring the superpo-
sition collapses it into one value. The trick is to notice that if 
gx=mN+1 and gp=mN+r, then g(p+qx) also equals mN+r, where 
q is any positive integer. Therefore, all p in this superposition 
are sequentially x apart from each other. A QFT can extract x 
from superposition, and thus the quantum computer would be 
able to find two numbers g(x/2)±1 which are very likely to share a 
factor with N. After 10 guesses, there is a 99% chance that those 
numbers share a factor with N. Once the numbers are found, 
the Euclidean algorithm can be used to break up g(x/2)±1 and N 
into their factors and find two prime factors of N, which are the 
private keys. See Appendix B for the full code.

SHA-256: A brute-force collision was simulated as fol-
lows. Instead of creating random messages and hashing them 
into keys, a random 256-bit hash was chosen to be the starting 
key. Then, random strings of 256 bits were generated until a 
string matched with the key. The assumption is that the ran-
dom hashes can all be created from unique messages. This was 
implemented by calculating the number of iterations it would 
take 64 qubits to test random hashes of 256-bits until a match 
with the key was found. A quantum computer can test many 
possibilities at once then use the QFT to pick out the right one 
(Sahu, 2021).  See Appendix C for the full code.

For every encryption algorithm, 10-20 random keys were 
tested. Instead of using the full-length keys (e.g. 128 bits), 
they were scaled down empirically to have a reasonable run 
time. For example, in the AES-128-bit encryption, a 32-bit key 
was tested with a 16-qubit computer and then the resulted were 
scaled up by four to get to 128 bits with a 64-qubit comput-
er. The results would scale linearly because the exponential 
increase in key possibilities is balanced by the exponential 
increase in computing. In the results, this is documented as 
“average simulated iterations,” which are the values that were 
used in the actual program and “average calculated iterations,” 
which are the values that are scaled back up to the full key 
lengths and full number of qubits. See Table 1 for the sim-
ulated key sizes and the calculated theoretical key sizes and 
see Table 2 for the simulated number of qubits and theoretical 
number of qubits.

Table 1. Length of keys/hashes in each simulation. The 
“Length of Partial Key” column contains the length of each 
key tested in the program. The “Theoretical Length of Full 
Key” column contains the scaled length of each key.

Encryption Method Length of Partial 
Key:

Theoretical Length 
of Full Key:

AES-128 32 bits 128 bits
RSA-1024 10-13 bits 1024 bits
SHA-256 8 bits 256 bits

Table 2. Qubits used in each simulation. The “Number of 
Simulated Qubits for Partial Key” column contains the 
number of qubits inputted in the program. The “Theoretical 
Number of Qubits for Full Key” column contains the scaled 
number of qubits for a full key length.

Encryption Method Number of Sim-
ulated Qubits for 
Partial Key:

Theoretical Num-
ber of Qubits for 
Full Key:

AES-128 16 64
RSA-1024 4 64
SHA-256 4 1.2061 x 1050

Figure 1. Number of iterations the simulated quantum com-
puter took to break the AES-128, RSA-1024, and SHA-256 
algorithms.

RESULTS
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DISCUSSION
The mean extrapolated iterations to hack the encryptions were 
3.74051 x 10206 for the SHA-256 hashing algorithm, 1.126 x 10164 
for the RSA-1024 encryption, and 2.87 x 1019 for the AES-128 en-
cryption. However, the mean simulated iterations for a partial key 
were 1744776.6 for SHA-256, 44751.6 for AES-128, and 27.35 
for RSA-1024. SHA-256 consistently took the longest, whereas 
RSA-1024 and AES-128 flip flipped due to the change in key 
length. The extrapolated results are interesting as the RSA-1024 
is the longest and most memory intensive key, four times that of 
the SHA-256. 
CONCLUSION
After testing all three simulations, it can be concluded that a 64-
bit quantum computer would still take an astronomical number of 
iterations to crack modern encryption. The current largest quan-
tum computer by IBM boasts 65 qubits so theoretically they could 
crack AES-128 if they tried for a very long time. However, as this 
technology grows and quantum computers with the same number 
of qubits as our computers have bits (about 4 × 1012) are built, 
quantum hacking could become a real threat. 
FUTURE STEPS
If I were to redo this project, I would consider longer testing times 
since my results were based on testing times of less than a minute. 
I would also like to physically verify my simulated programs, so 
they are more accurate and reflective of actual quantum comput-
ers and cryptography.
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Table 3. Iterations of the program needed to hack each sim-
ulation. The “average simulated iterations” column contains 
the exact numbers that came out of the program. The “aver-
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Encryption Method Mean Simulated 
Iterations for a 
Partial Key:
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AES-128 44751.6 2.87 x 1019

RSA-1024 27.35 1.126 x 10164
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APPENDICES

Appendix A. AES-128 simulation code.

Appendix B. RSA-256 simulation code.

Appendix C. RSA-1024 simulation code.
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Appendix C continued. RSA-1024 simulation code.


